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In writing this report, I relied heavily on the following sources: ’An intro-
duction to cyclotomic fields’ by Lawrence Washington and ’Iwasawa Theory -
Past and Present’ by Ralph Greenberg.

Introduction

Cyclotomic extensions Q(ζn) of Q, where ζn is a primitive nth root of unity,
(or more generally, extensions of a number field obtained by adjoining a root of
unity) play a very important role in number theory. For example, in the proofs
of class field theory, many statements are first proved in the case of finite, cyclic
extensions and then deduced the more general case. Cyclic extensions can also
be used as a testing ground for theorems since they are well understood and
relatively easy to work with.

The study of such fields led to Kummer’s proof of Fermat’s last theorem in the
following special case.

Theorem 0.1. If p is an odd, regular prime (i.e. p does not divide the class
number of Q(ζp)), then xp + yp = zp has no solution with (xyz, p) = 1 and
x, y, z ∈ Z.

While working on Fermat’s last theorem, Kummer discovered that there is a
connection between the arithmetic of the field Q(ζp) and the values of the Rie-
mann Zeta function ζ(s) for s taking values that are odd, negative integers. He
discovered that that p is a regular prime if and only if it does not divide the
numerator of any of the values ζ(−1), ζ(−3), . . . , ζ(4− p).

The Riemann Zeta function is a special case of an L-function. There is also a
theory of p-adic L functions. In the 60s, Iwasawa developed the theory of Zp-
extensions. He related such extensions to p-adic L-functions. In 1979, Mazur
and Wiles proved Iwasawa’s main conjecture, showing that p-adic L-functions
are essentially characteristic power series arising from Galois actions on Zp-
extensions.
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Aside from this, there are strong analogues between the theory of function fields
of curves and Zp-extensions, which Iwasawa often emphasised. Iwasawa theory
has become an important tool in modern number theory. In particular, much
of the progress towards the Birch-Swinnerton Dyer conjecture to date can be
attributed to tools from Iwasawa theory.

Zp-extensions and the Iwasawa Algebra

A Zp-extension of a number field F is a Galois extension F∞/F with Gal(F∞/F ) ∼=
Zp.

Let Γ be the multiplicative topological group isomorphic to the additive group
Zp with γ being a fixed topological generator corresponding to 1 in Zp. Closed
subgroups of Zp are precisely those of the form pnZp, corresponding to closed
subgroups of Γ of the form Γpn

. Let Γn = Γ/Γpn

= cyclic group of order pn.

Let O be the ring of integers of a finite extension of Qp. There is a natu-
ral isomorphism O [Γn] ∼= O[T ]/ ((1 + T )pn − 1) via γ mod T pn 7−→ 1 + T mod(
(1 + T )p

n − 1
)
. Moreover, using the fact that (1+T )p

n−1 divides (1+T )p
m−1

for m ≥ n ≥ 0, we have natural maps ϕm,n : O[Γm] → O[Γn] induced by the
natural maps Γm → Γn.

Taking the inverse limit with respect to the ϕm,n, we get the profinite group ring
O[T ] of T . We obtain O[T ] ⊆ O[[T ]] since α ∈ O[T ] gives rinse to a sequence
αn ∈ O [Γn] such that ϕm,n (αm) = αn.

Let f, g ∈ O[[T ]] where Q[T ] in with ai ∈ p (the unique maximal ideal of O)
for 0 ≤ i ≤ n − 1, an ∈ O×. Then we can write g = qf + r uniquely where
q ∈ O[[T ]], r ∈ O[T ] is a polynomial of degree at most n− 1.

Theorem 0.2 (Division algorithm). Let f, g ∈ O[[T ]] where Q[T ] in with ai ∈ p
for 0 ≤ i ≤ n − 1, an ∈ O×. Then we can write g = qf + r uniquely where
q ∈ O[[T ]], r ∈ O[T ] is a polynomial of degree at most n− 1.

P (T ) ∈ O[T ] is called distinguished if P (T ) = Tn + an−1T
n−1 + . . . a0 with

ai ∈ p for 0 ⩽ i ⩽ n− 1.
(This is almost the definition of an Eisenstein polynomial).

Theorem 0.3 (p-adic Weierstrass preparation theorem). Let f(T ) =
∑∞

i=0 aiT
i

∈ O[[T ]]. Then assume ai ∈ p for 0 ≤ i ⩽ n− 1 but an /∈ p so an ∈ O×. Then
f can be written uniquely in the form f(T ) = P (T )U(T ) where U(T ) ∈ O[[T ]]
is a unit and P (T ) is a distinguished polynomial of degree n.

More generally, if f(T ) ∈ O[[T ]] is nonzero, we can write it uniquely as f(T ) =
πµP (T )U(T ) where µ ∈ Z≥0 (where π is a uniformizer for O).
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As a consequence of the division algorithm and the Weierstrass preparation
theorem, we obtain:

Theorem 0.4. There is an isomorphism O[[Γ]] ∼= O[[T ]] via γ 7→ 1 + T .

We shall be particularly interested in the case O = Zp and we write Λ =
Zp[[Γ]] ∼= Zp[[T ]] and call it the Iwasawa algebra. Its structure as a topological
ring is of great importance in Iwasawa theory. We will now state some proper-
ties of Λ and its modules.

By the p-adic Weierstrass preparation theorem, if f(T ) ∈ Λ is nonzero and
P (T ) is distinguished, we can write P (T ) = q(T )P (T ) + r(T ) ∈ Zp[[T ]] where
deg(r(T )) < deg(P (T )). This gives a division algorithm ⇒ Λ is a UFD whose
irreducibles are P and distinguished polynomials. Additionally, Λ is noetherian,
using the fact that if A is a noetherian ring, then so is A[[X]].

If f, g ∈ Λ are relatively prime, then (f, g) has finite index in Λ. The proof
of this reduces to showing that (f, g) must contain some (f ′, ps) where f ′ is
distinguished and that such an ideal has finite index.

Let f ∈ Λ with f /∈ Λ×. Then Λ/(f) is infinite.

Proof: We may assume f ̸= 0. It suffices to consider f = p and f distinguished.
If f = p, Λ/(f) ∼= Z/pZ[[T ]]. If f is distinguished, use the division algorithm.

These facts are used to show that the prime ideals of Λ are (0), (p, T ), (p) and
the ideals (P (T )) where P (T ) is irreducible and distinguished. The ideal (p, T )
is the unique maximal ideal.

We now shift our attention to Λ-modules. M and M ′ (Λ-modules) are pseudo-
isomorphic M ∼ M ′ if there is a homomorphism M −→ M ′ with finite kernel
and finite cokernel.

M ∼M ′ does not necessarily imply thatM ′ ∼M , even if we assume both mod-
ules are finitely generated. E.g. (p, T ) ∼ Λ but Λ ̸∼ (p, T ) since for Λ → (p, T ),
f the image of 1 in (p, T ), Λ/(f) is infinite since f is not a unit in Λ ⇒ (p, T )/(f)
is infinite. It is true if M and M ′ are both finitely generated and torsion.

The following theorem is a classification of pseudo-isomorphism classes of finitely
generated Λ-modules. The proof is similar to the classification theorem of
finitely generated modules over a principal ideal domain. This is perhaps not
surprising given the form of these modules and the fact that every localization
of Λ at a height 1 prime ideal is a principal ideal domain.

Theorem 0.5 (Classification of finitely generated Λ-modules). IfM is a finitely
generated Λ-module, then M ∼ Λr ⊕ (⊕s

i=1Λ/ (p
ni)) ⊕ (⊕t

i=1Λ/ (fj(T )
mj )) for

r, s, t, ni,mj ∈ Z, fj distinguished and irreducible.
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If M is finitely, torsion generated Λ-module pseudo isomorphic to a mod-
ule of the form given in Theorem 0.5, then its characteristic polynomial is
p
∑s

i=1 ni
∏t

j=1 fj . Its characteristic ideal in Λ is the ideal generated by the
characteristic polynomial.

Finally, we have Nakayama’s lemma for Λ-modules:

Theorem 0.6 (Nakayama’s lemma). Let X be a compact Λ-module. Then
X is finitely generated over Λ ⇔ X/(p, T )X is finite. If x1, . . . , xn generate
X/(p, T )X over Z, then they also generate X as a Λ-module. Special case:
X/(p, T )X = 0 ⇔ X = 0.

Some easy consequences of class field theory

Class field theory is our main tool for transferring information about the topol-
ogy of Zp to obtain information about Zp-extensions and about Λ-modules.

We will not state the full theorems of class field theory. We only quote the
required statements as needed and show how this can be applied to the study
of Iwasawa theory.

The Hilbert class field and the Hilbert p-class field

Let F be a number field. Class field theory tells us that there is a maximal
unramified abelian extension of F , called the Hilbert class field of F (and which
we will denote by FH) such that Gal(FH/F ) ∼= Cl(F ). In particular, FH is a
finite extension of F . Furthermore, every unramified abelian extension of F has
Galois group isomorphic to a quotient of Cl(F ).

Since Cl(F ) is abelian, it has a unique sylow p-subgroup Cl(F )(p) for every
prime p dividing #Cl(F ). If p does not divide #Cl(F ), let Cl(F )(p) be the

trivial subgroup. Then we have Cl(F ) = Cl(F )(p) ⊕
(
⊕p′∤pCl(F )

(p′)
)
, then

letting H(p) = ⊕p′∤pCl(F )
(p′), we have Cl(F )(p) ∼= Cl(F )/H(p). Therefore,

by global class field theory, there is a unique extension F
(p)
H of F satisfying

Cl(F
(p)
H ) ∼= Cl(F )(p) and FH ⊇ F

(p)
H ⊇ F . It is called the Hilbert p-class field of

F and by definition, it is the maximal unramified abelian extension of F with
a pro-p Galois group.

Which primes ramify in Zp-extensions

Every number field has at least one Zp-extension, namely the cyclotomic Zp-
extension. It is obtained by letting F∞ be an appropriate subfield of F (ζp∞).

Lemma 0.1. Let F∞/F be a Zp-extension. Then, for each n ≥ 0, there is a
unique field Fn of degree pn over F , and these Fn, plus F∞, are the only fields
between F and F∞.
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Proof: The intermediate fields correspond to the closed subgroups of Zp. Let
S ̸= 0 be a closed subgroup and let x ∈ S be such that vp(x) is minimal. Then
xZ, hence xZp, is in S. By the choice of x, we must have S = xZp = pnZp for
some n.

Theorem 0.7. If F is a number field and F∞/F is a Zp-extension, then the
only primes of F that can ramify in the extension F∞/F are the primes lying
over p.

The proof is a clever application of local class field theory to study the inertia
group at a prime l ̸= p. A cdvr (complete discrete valuation ring) containing
this inertia subgroup is constructed and the study of the local units of this cdvr
gives us the conclusion we want.

Proof: Let l̃ be a prime of F , possibly archimedean, not lying over p. Let
I ⊂ Gal(F∞/F ) ∼= Zp be its inertia subgroup. We will show that this is zero.
Suppose not, then since I is closed, it must be of the form pnZp for some n.

We can immediately exclude l̃ being archimedean since in this case, I has order
1 or 2. For each n, inductively choose a prime l̃n of Fn lying over l̃n−1 with

l̃0 = l̃. Let F̃n be the completion of Fn at the prime l̃n, and let F̃∞ = ∪nF̃n.
This is a cdvr with a unique maximal ideal, corresponding to a prime ideal l̃∞
of F∞ lying over each l̃n. Setting kn and k∞ to be the residue fields of F̃n and
F̃∞ respectively, and

In = ker(Gal((F∞)l̃∞/(Fn)l̃n) → Gal(k∞/kn))

= ker(Gal(F̃∞/F̃n) → Gal(k∞/kn)),

we obtain I = lim
←n

In.

Letting U be the units of F̃∞, local class field theory says that there is some con-
tinuous, surjective homomorphism U → I ∼= pnZp. However, U ∼= (finite group)×
Za
l for l̃ lying over the prime integer l (can be proved by considering logl : U →

l−NOF̂∞
for sufficiently large N). Since pnZp has no torsion, there must be

some continuous, surjective map Za
l → pnZp → pnZp/p

n+1Zp. However, Za
l has

no closed subgroups of index a p-power, contradiction.

Theorem 0.8. Let F be a number field. Let F∞/F be a Zp-extension. At least
one prime ramifies in this extension (by the above, such a prime is a prime of F
over p), and there exists n ≥ 0 such that every prime which ramifies in F∞/Fn

is totally ramified.

The first claim follows from the existence and description of the Hilbert class
field of F and the second follows from the topology of Zp extensions.

Proof: Proof: Since the class number of F is finite, the maximal abelian un-
ramified extension of F is finite, so some prime must ramify in F∞/F since
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FH ⊇ FH ∩ F∞ (the maximal unramified subextension of F∞/F ). Therefore,
Gal(FH ∩ F∞) is a quotient of Gal(FH/F ) ∼= Cl(F ) so is finite.

We know that only finitely many primes ofK ramify inK∞/K (we are restricted
to considering primes of K over p). Call them p1, . . . , ps, and let I1, . . . , Is be
the corresponding inertia groups. Then ∩Ij = pnZp for some n. The fixed
field of pnZp is Kn and Gal(K∞/K) is contained in each Ij (since it is a closed
subgroup). Therefore, all primes above each pj in Kn are totally ramified in
K∞/Kn. This follows from the fact that for such primes P, Gal(K∞/Kn) fix
the residue field and since DB|P ⊂ Gal(K∞/Kn), it must be equal to inertia.
This completes the proof.

Iwasawa’s theorem

The theorem and the idea of the proof

Let F be a finite extension of Q. Let p be a prime number. Suppose that F
is a Galois extension of F and that Γ = Gal(F∞/F ) is isomorphic to Zp, the
additive group of p-adic integers. The nontrivial closed subgroups of Λ are of
the form Γn = Γpn

for n ≥ 0. They form a descending sequence and Fn/F is
cyclic of order pn. If we let Fn = FΓn

∞ , then we obtain a tower of number fields

F = F0 ⊂ F1 ⊂ · · · ⊂ Fn ⊂ . . .

such that Fn/F is a cyclic extension of degree pn and F∞ = ∪nFn.

Theorem 0.9 (Iwasawa’s theorem). Let pen be the highest power of p dividing
the class number of Fn. Then there exist integers λ, µ and ν such that en =
λn+ µpn + ν for all sufficiently large n.

We explain the ideas and main steps of the proof. Iwasawa’s proof of this
theorem is based on studying the Galois group X = Gal(L∞/F∞), where
L∞ = ∪nLn and Ln is the Hilbert p-class field of Fn. This is a natural approach
in light of the fact that, by definition of Ln and en, we have [Ln : Fn] = pen .

The extension L∞/F is Galois and there is an exact sequence of topological
groups

0 → X → Gal(L∞/F ) → Γ → 0.

Since X is a projective limit of finite, abelian p-groups, we can regard X as a
compact Zp-module.

There is also a natural action of Γ on X. If γ ∈ Γ and x ∈ X, one defines
γ(x) = γ̃xγ̃−1, where γ̃ ∈ Gal(L∞/F ) is such that γ̃|F∞ = γ· All of this struc-
ture allows Iwasawa to study the growth of [Ln : Fn] which, is equal to p

en .
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The relationship between the structure of X (together with the action of Γ)
and the groups Gal(Ln/Fn) is easy to establish if we assume that F has just
one prime p lying over p and that this prime is totally ramified in F∞/F . The
prime p would then be the only prime of F which is ramified in F∞/F . The
general case is a bit more involved but we do not lose the idea of the structure
of the argument if we work in this restricted setting. For a more general proof,
see Washington’s book.

Let L∗n denote the maximal abelian extension of Fn contained in L∞. Obviously,
F∞ ⊂ L∗n and Ln ⊂ L∗n. Let pn denote the unique prime of Fn lying over p, which
is the only prime of Fn ramified in L∗n/Fn (it is ramified using the fact that the in-
ertia subgroup of a prime over pn in L∗n contains the inertial subgroup of a prime
of F∞ over Ln as a subgroup). Clearly Ln = (L∗n)

In , where In denotes the inertia
subgroup of Gal(L∗n/Fn) for pn. Now In ∩Gal(L∗n/F∞) = 0 since L∗n/F∞ is un-
ramified (subextension of an unramified extension). Therefore L∗n = LnF∞ and,
since L∗n ∩ F∞ = Fn, we have Gal(Ln/Fn) ∼= Gal(LnF∞/F∞) ∼= Gal(L∗n/F∞).
Considering the exact sequence

0 → Gal(L∞/L
∗
n) → Gal(L∞/Fn) → Gal(L∞/Fn)

ab → 0,

we see that Gal(L∞/L
∗
n) = [Gal(L∗n/Fn),Gal(L∗n/Fn)].

We also have an exact sequence 0 → X → Gal(Ln/Fn) → Γn → 0. Let γ be a
fixed topological generator of Γ. (It suffices to choose γ ∈ Γ such that γ|Fn is
nontrivial.) Then γn = γp

n

is a topological generator of Γn.

Since Γn acts on X by inner automorphisms, one can see that γn(x)x
−1 is a

commutator in Gal(Ln/Fn) for each x ∈ X. It is not hard to show that the
derived subgroup of Gal(Ln/Fn) is precisely {γn(x)x−1 : x ∈ X}. Changing to
an additive notation for X, we write this as wnX, where wn = γn − 1. There-
fore, Gal(L∗n/F∞) ∼= X/wnX, giving the result that Gal(Ln/Fn) ∼= X/wnX
for all n ≥ 0. This isomorphism is induced by the restriction map from X to
Gal(L∗n/Fn).

Let A be a discrete, p-primary, abelian group on which Γ acts continuously (as
automorphisms). Assume that AΓn = {a : a ∈ A, γn(a) = a} is finite for all
n ≥ 0. The structure theory which Iwasawa develops then allows him to prove
that |AΓn | = pλn+µpn+v for all sufficiently large n, where the integers λ and µ
are described in terms of the structure of A and where v ∈ Z. He applies this
to A = Homcont(X,Qp/Zp). The action of Γ on this group is induced by the
action of Γ on X. Note that X/wnX is the maximal quotient of X on which
Γn acts trivially. Hence AΓn = Hom(X/wnX,Qp/Zp) is finite and has the same
order as X/wnX. So as required result that pen = |Gal(Ln/Fn)| = |X/wnX| =
pλn+µpn+v for n≫ 0.

Serre introduced the approach, which was subsequently adopted by Iwasawa,
of viewing X as a module over the ring Λ = Zp[[T ]] by letting T act on the
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Zp-module X as γ− 1, making X into a Zp[[T ]] module in the way described in
the previous section. In the case we have been considering, using the fact that
X/TX ∼= Gal(L0/F0) is finite, combined with Nakayama’s lemma 0.6, we obtain
TnX = 0 for n >> 0. Moreover, from the stucture theorem 0.5 of finitely gen-
erated Λ-modules, we have some homomorphism X → ⊕t

i=1Λ/(fi(T )
ai) with

finite kernel and cokernel, where each fi(T ) is an irreducible element of Λ and
each ai is a positive integer for 1 ≤ i ≤ t. The value of t, the prime ideals
(fi(T )), and the corresponding a′is are uniquely determined by X, up to their
order. Each fi(T ) is either distinguished or p. We define the characteristic
polynomial of X to be the polynomial fX(t) =

∏t
i=1 fi(T )

ai .

The invariants λ and µ which occur in Iwasawa’s theorem can be described just
in terms of fX(T ). It turns out that λ = deg(fX(T )) and that µ is just the
largest integer such that pµ divides fX(T ) in Λ (or Zp[[T ]]). One can also de-
scribe λ and µ in terms of the Λ-module X. We have X/XZp-tors

∼= Zλ
p . This

determines λ just in terms of the structure of X as a Zp-module. As for µ, let
Y = XZp-tors· Since Λ is Noetherian, Y is finitely generated as a Λ-module. It
therefore has finite exponent pc as a group. For i ≥ 0, piY/pi+1Y is a module
over the ring Λ = Λ/pΛ, which is simply Fp[[T ]], with Fp = Z/pZ. Then µ is
just the sum of the Λ-ranks of the modules piY/pi+1Y , where 0 ≤ i ≤ c− 1.

We continue with the special case where only one prime p of F lies over p and
F∞/F is totally ramified at p. Then pen = |X/wnX| for n ≥ 0. To study
how these orders grow, one reduces to the case of a Λ-module of the form
Y = Λ/(g(T )), where g(T ) is one of the fi(T )

ais. Considering separately the 2
cases where g is a power of p and g is distincuished, and accounting for the finite
kernel and cokernel, we obtain pen = |Gal(Ln/Fn)| = |X/wnX| = pλn+µpn+v

for n≫ 0 using Serre’s approach.

Determining λ and µ

Iwasawa wanted to understand the invariants λ and µ associated to Zp-extensions.
In general, the constants λ and µ are hard to determine.

Proposition 0.1. Assume that the class number of F is not divisible by p and
that F has only one prime lying over p. Let F∞/F be any Zp-extension. Then
λ = µ = ν = 0. (No power of p can divide #Cl(Fn)).

Proof: First note that the unique prime p of F lying over p must be ramified
in F1/F . Otherwise F1 would be contained in the p-Hilbert class field L0 of
F = F0, contradicting the assumption that p doesn’t divide the class number
of F . This implies that p is totally ramified in F∞/F . Using the notation de-
scribed before, we have X/TX ∼= Gal(L0/F0) = 0.

Hence TX = X and therefore X = 0 (because the action of T on X is topolog-
ically nilpotent). But then Gal(Ln/Fn) = X/wnX = 0 for all n, which clearly
means that λ = µ = v = 0, as stated.
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Proposition 0.2. Assume that p splits completely in F/Q. Let F∞/F be a Zp-
extension in which every prime of F lying over p is ramified. Then λ(F∞/F ) ≥
r2, where r2 denotes the number of complex places of F .

To prove this, we need the following theorem on Zp-extensions:

Theorem 0.10. Let F̃ denote the compositum of all Zp-extensions of F . Then

Gal(F̃ /F ) ∼= Zd
p, where r2 + 1 ≤ d ≤ [F : Q].

Proof: Let U0 =
∏
p|p
U0
p where U0

p is the group of principal units of the completion

of F at p. Considered as a Zp-module,

rankZp
(U0) =

∑
p|p

[Fp : Q] = [F : Q].

The Artin map defines a homomorphism from U0 to Gal(F̃ /F ) with finite

cokernel, isomorphic to Gal(L0 ∩ F̃ /F ). Why? Gal(F̃ /F ) ↔ H̃ ≤ JF such
that k×NF̃ /F

(
JF̃
)
= H̃ and H = k×NFH/F (JFH

). Therefore, the Artin map

(idelic version) induces a morphism U0 −→ Gal(F̃ /F ). Letting FH = L0 =
maximal abelian extension unramified outside of H, the image of the Artin
map is Gal(F̃ /L0 ∩ F̃ ). Therefore, the kernel is Gal(F̃ /F )/Gal(F̃ /L0 ∩ F̃ ) =

Gal(L0 ∩ F̃ /F ). It is finite because L0 ⊃ L0 ∩ F̃ ⊃ F so Gal(L0 ∩ G̃/F ) is
isomorphic to a quotient of the ideal class group of F .

What is the kernel of this homomorphism? Let E be the group of units in F and
E◦ be the subgroup of units ϵ ≡ 1(modp) for all p | p (of finite index in E). We
consider E0 as a subgroup of U0, using the natural injection F →

∏
p|p
Fp = U0.

The kernel H of the Artin map is characterized as the smallest Zp-submodule

of U0 containing E0 and such that U0/H is torsion-free. ([H : E0] <∞)

The theorem follows because U0/H has Zp-rank equal to [F : Q]− rankZp(E
0)

and rankZp
(E0) ⩽ rankZ(E) = r1 + r2 − 1 (Dirichlet’s units theorem).

Proof of Proposition 0.2:Under the assumption of that F∞/F is ramified over

every p|p, the inertia subgroup Ip of Gal(F̃ /F ) is the image of Up under the

Artin map U0 → Gal(F̃ /F ) =⇒ Ip ∼= Zp but the image of Ip in Gal(F∞/F )
under the restriction map must also be isomorphic to Zp because p is ramified

in F∞/F . Therefore, Ip∩Gal(F̃ /F ) = 0, which implies primes of F∞ lying over

p are unramified in F̃ /F∞.

(Why? If p is ramified in F̃ /F∞, it must be totally ramified since it is contained
in a Zp-extension).
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Since primes not dividing p are unramified in every Zp-extension of F , we must

have F̃ ⊂ L∞ (since Ln ∩ F̃ /Fn must be unramified for all n).

Therefore Gal(L∞/F∞)/Gal(L∞/F̃ ) ∼= Gal(F̃ /F∞) ∼= Zd−1
p implies λ = rankZp

(X) ≥
d− 1 ≥ r2.

Iwasawa’s main conjecture (now theorem)

It is also natural to consider the p-primary subgroups Sn of Cl(Fn). We have
Sn

∼= Gal(Ln/Fn) for each n ≥ 0. Letting S∞ = lim
→n

Sn, Iwasawa shows that this

is a discrete Λ-module, isomorphic to Hom(Gal(M∞/N∞), µp∞) where M∞ is
the maximal abelian extension of F∞ that is pro-p and N∞ is obtained from F∞
by adjoining app p-power roots of unity. This isomorphism preserves the action
of Gal(F∞/Q), hence of Γ on both groups. We can identify Gal(F∞/Q) = ∆×Γ
where ∆ = Gal(F∞/Q∞),Γ = Gal(Q∞/Q), where Q∞ is the unique sub-
field of F∞ such that Gal(Q∞/Q) ∼= Zp. There is a canonical isomorphism
ω : ∆ → µp−1 ⊂ Z×p defined by the action of ∆ on µp∞ . Explicitly, ω is the
cyclotomic character, where for each σ ∈ ∆, ω(σ) is determined by the property
that for every ζ ∈ µp∞ , σ(ζ) = ζω(σ).

If A is any Zp-module on which ∆ acts, there is a canonical decomposition

A = ⊕p−1
k=0A

ωk

where Aωk

= {a ∈ A : δ(a) = ωk(δ),∀δ ∈ A}. We are mainly
interested in this decomposition for A = X and S∞. The actions of ∆ and Γ

commute and we can therefore regard Xωk

and Sωk

∞ as Λ-modules.

Theorem 0.11 (Iwasawa’s main conjecture (theorem)). For each odd integer

1 ≤ i ≤ p− 2, we have Xωi ∼= Λ/I where I is the principal ideal (fXωi (T )) of Λ
and in fact, I = (gi(T )) where gi is a power series attached to a Kubota-Leopoldt
p-adic L-function Lp(ω

1−i, s). The power series is determined by interpolation
by the values gi(γ

s − 1) = Lp(ω
1−i, s) for all s ∈ Zp where γ is a topological

generator of 1 + pZp.

This was eventually proved by Mazur and Wiles in 1984. Their approach was
inspired by Ribet’s proof of the converse of a theorem by Kummer- Herbrand in
that they use the structure of certain finite groups of torsion on abelian varieties
arising as quotients of Jacobian varieties of some modular curves. An impor-
tant role is played by the cuspidal subgroup of this Jacobian, whose structure is
related to Stickelberger ideals (these can be used to construct non-trivial anni-
hilators of ideal class groups), which are in turn related to Bernoulli numbers.
Using fields generated by the group of torsion points, Mazur and Wiles construct
a finite sequence of extensions of F∞ contained in L∞. Another crucial part of
their proof depends an the theory of fitting ideals to prove a certain divisibility
statement they need.

10



An obvious question is the following: Why do Jacobian varieties and modular
forms allow us to study such problems?

To discuss this, we first discuss Ribet’s approach to proving the converse of
the Kummer-Herbrand theorem. The Kummer-Herbrand result states that if
Sωi

0 ̸= 0, then p | Bj . As a reminder, S0 = Cl(F )p ∼= Gal(L0/F ). The
Kummer-Herbrand theorem is a result of Stickelberger’s theorem, giving an an-
nihilator in Z[∆] of S0. Ribet proves the converse, showing that if p | Bj , then

Gal (L0/F )
ωi

̸= 0. To do this, he constructs a nontrivial, uramified p-extension
L/F such that Gal(L/F ) is abelian, L/Q is Galois and ∆ = Gal(F/Q) acts on
Gal(L/F ) by the character ωi. (L would correspond to a subfield extension in
L0).

An idea pursued by various people in the 70s was to construct such a field L
using p-adic representation associated to modular forms. This approach was mo-
tivated by Ramanujan’s congruence σ11(n) ≡ τ(n)(mod 691) for all n ⩾ 1 where

τ(n) = nth coefficient in the Fourier expansion of f12 = q
∏∞

m=1 (1− qm)
24
, σ11(n) =∑

d|n d
11. This congruence arises from the fact that 691|B12. We then obtain

a congruence between the Eisenstein series of weight 12 which has σ11(n) as its
nth Fourier coefficient and a cusp form which must be f12. In general, if p | Bj ,
then there is a similar congruence involving a cusp form of level 1 and weight j.

If p is any prime, letting QΣ be the maximal extension of Q unramified out-
side of Σ, then Deligne constructs a 2-dimensional representation space Vp of
Gal(QΣ/Q) associated to f12 such that TrVp

(Frobl) = τ(l) for all primes l ̸= p,
where Frobl ∈ Gal(QΣ/Q) is the Frobenius of any prime of QΣ over l. For
p = 691, choosing a Gal (QΣ/Q)-invariant Zp-lattice Tp in Vp, we obtain a 2
-dimensional representation space Tp/pTp for Gal (QΣ/Q) over Fp = Z/pZ such
that Frobl has trace 1 + l11(modp) (equal to 1 + ω11(l)(modpZ)).

The Chebotarev density theorem then implies that Tp/pTp is reducible and
has composition factors Fp = Fp

(
ω0
)
, on which Gal (QΣ/Q) acts trivially, and

Fp

(
ω11
)
, on which Gal(QΣ/Q) acts by ω11. Why? We can define a semisimple

representation ρ̄′ : Gal(QE/Q) −→ GL2 (Fp) given by ρ̄′ = χ0 ⊕ χ11 where χ0

is the trivial character, χ11 is the mod p reduction of will so for l ̸= p. This
satisfies Tr (p′ (Frobl)) = 1 + l11(modp), the same as for Tp. The Chebotarev
density theoem says that {Frobl} for all l unramified is dense in Gal(QE/Q).
Therefore, the traces on Frobenius elements determine the semisimplification of
a representation, which implies that 2 semisimple representations over Fp hav-
ing the same trace on all Frobenius elements are isomorphic.

If it were known that the Vp were irreducible, then Tp could be chosen so that
there is a nonsplit exact sequence 0 −→ Fp

(
ω0
)
−→ Tp/pTp −→ Fp(ω

11) → 0
of Gal (QΣ/Q)-modules. In matrix form, the corresponding Fp-representation
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looks like

(
1 ∗
0 ω11

)
where ∗ is nontrivial. It follows, since the kernel must

have finite index, that there is a cyclic extension L of F of degree p such that the
representation factors through Gal(L/Q). Why cyclic of degree p? Gal(L/F ) ∼=
im(rep) ∼= Fp of degree p and abelian. Its restriction to Gal(L/F ) gives a ∆-
equivariant isomorphism Gal(L/F ) ∼= Hom

(
Fp(ω

11),Fp

)
= Fp

(
ω−11

)
. Starting

from the fact that p | Bj for j = 12, p = 691, we obtain a field extension L as
above such that ∆ = Gal(F/Q) acts on Gal(L/F ) by χ = ω1−j = ωi (i = 679).
The extension L/F turns out to be automatically unramified.

In what follows, we write GK = Gal(K/K) for a field K. A result of Wiles
shows that for the so called ’ordinary prime’ p = 691 for f12, Vp is a represen-
tation space for GQp

that is reducible. There is therefore an exact sequence
0 −→ Wp → Vp → Up → 0 where Wp and Up are 1 -dimensional representation
spaces for GQp

such that Wp
∼= Qp(11), Up

∼= Qp(0) as representation spaces for
the inertia subgroup Ip = GQunr

p
. Here Qp(k) is defined to be the 1-dim space on

which a Galois group acts by the kth power of the p-power cyclotomic character.
Therefore, Up is an unramified GQp -module. This implies Tp/pTp has a GQp -
submodule isomorphic to Fp(ω

11). Since it also has Fp

(
ω0
)
as a submodule, we

have Tp/pTp ∼= Fp

(
ω0
)
× Fp

(
ω11
)
as GQp -modules ⇒ GQp (ζp) acts trivially on

Tp/pTp ⇒ there is a unique prime of F lying over p that splits completely in
L/F . Since L ⊂ QΣ, where Σ = {p,∞}, L is a subfied of the p-Hilbert class of F .

Ribet proves the converse of the Kummer Herbrand theorem for all p and j
by pursuing the idea of finding unramified extensions L/F in the 2-dimensional
representations associated to modular forms. He uses modular forms of weight
2 with the property that the associated l-adic representations arise from abelian
varieties. He then obtains a congruence between an Eisenstein series and a cusp
form if p | Bj . He proves irreducibility of the associated 2-dim representation
and then the existence of a suitable GQ-invariant lattice. To prove L/F is un-
ramified, he reduces the necessary splitting for GQp -modules to a theorem of
Raynaud concerning finite, commutative group schemes.

In the work of Wiles proving the main conjecture, for p-adic L-functions attached
to totally real number fields, unramified extensions are constructed in the 2-
dimensional representations associated to Hilbert modular forms. Under the
assumption of ordinaryness, he proves the reducibility as a GQp -representation
space, just as for f12. The argument uses ideas of Hida and reduces to 2-
dimensional representations obtained from abelian varieties (i.e. from modular
forms of weight 2). Let L(z, f) be the p-adic L-function associated to a newform
f of weight k ⩾ 2 at any level, not divisible by p. Under an ordinariness
hypothesis, this belongs to Λ = O[[T ]].

12



Elliptic curves and the BSD conjecture

The proof of Iwasawa’s main conjecture provides a link to geometry. We explore
this further by considering how the theory of Zp extensions can be applied to
the study of elliptic curves (and abelian varieties more generally).

0.1 A Zp-analogue of the Mordell-Weil theorem

Mazur aimed proving results of the following kind:

Conjecture 0.1. Suppose A is an abelian vanity defined over a number field
F . Assume p is a prime such that A has good reduction at all primes of F lying
above p. Let F∞/F be the cyclotomic Zp-extension. Then A(F∞) is finitely
generated.

This is reminiscent of the Mordell-Weil theorem, which states that if A is an
abelian variety over a number field F , then A(F ), the set of F -rational points,
is finitely generated. The proof of the Mordell-Weil theorem has 2 main parts.
First, the weak Mordell Weil theorem is proven. This is the statement that
for any integer m ≥ 2, A(F )/mA(F ) is finite. The second part uses a height
function defined on A and the weak Mordell-Weil theorem to prove the (strong)
Mordell-Weil theorem. The weak Mordell-Weil theorem is proved by showing

that the Selmer group S
(m)
A (F ), into which A(K)/mA(K) injects, is finite. We

define Selmer groups and Tate Shafarevich groups below. These groups are im-
portant in considering this type of question.

Given an abelian variety A/F and an integer n ≥ 2, the Selmer group S(n)(A/K)
is defined to be:

S
(n)
A (F ) = {γ ∈ H1(F,A[n]) : for all places p of K, γp comes from A(Kp)}

= Ker(H1(K,A[n]) −→
∏
p

H1(Kp, A)) where A[n] is the set of n torsion points of A(F ).

The Tate Shafarevich group of A is defined to be

SHA(K) = Ker

(
H1(K,A) →

∏
p

H1(Kp, A)

)
.

These groups are related by the following exact sequence

0 → A(F )/nA(F ) → S
(n)
A (F ) → SHA(F )[n] → 0.

Here SHA(F )[n] is the subgroup of elements in the kernel of the multiplication
by n map on SKA(F ).

13



Similarly, Selmer groups and the Tate Shafarevich group can be defined for any
algebraic extension K/F of F . For a prime p, we define

SA(F )p = ∪n≥1S
pn

A (K) and SHA(K) = SHA(F )p =
⋃
n≥1

Ker

(
H1(F,A[pn]) →

∏
v

H1(Fv, A)

)

We then have an exact sequence

0 → A(K)⊗ (Qp/Zp) → SA(K)p → SHA(K)p → 0.

Mazur proves his conjecture under the following assumption:

A(F ) and SHA(F )p are finite.

Using the above exact sequence, this gives finiteness of SA(K)p.

Theorem 0.12 (Mazur’s control theorem). Assume A/F has good, ordinary
reduction at all primes of F lying over p. Let F∞/F be the cyclotomic Zp-
extension. Then the kernel and cokernel of the natural maps SelA(Fn)p −→
SelA(F∞)

Gal(F∞/Fn)
p are finite and have bounded order as n→ ∞.

Assuming SA(F )p is finite, Mazur’s control theorem implies that SA (F∞)p is a
discete, p-primary subgroup on which Γ = Gal(F∞/F ) acts.

We can regard SelA(F∞)p as a discrete Λ-module, from which it follows that its
Pontryagin dual XA (F∞) as a compact Λ-module.

If we assure SA(F )p is finite, then Mazur’s control theorem implies thatXA (F∞) /TXA (F∞)
is finite, which implies that XA (F∞) is a finitely-generated, torsion Λ-module.
The classification theorem implies that XA(F∞) has finite Zp-corank, denoted
by λA(F∞/F ). The maximal divisible subgroup (SelA(F∞)p)div of SelA(F∞)p
is isomorphic to (Qp/Zp)

λA(F∞/F ). This implies that A(F∞) ⊗ (Qp/Zp) ∼=
(Qp/Zp)

r for some 0 ≤ r ≤ λA(F∞/F ).

If F∞/F is the cyclic Zp-extension, then A (F∞)tors is known to be finite. Mazur
proves that this, along with the previous hypotheses, imply that A(F∞) is a
finitely generated group.

This could be seen as vaguely analagous to the proof of the Mordell-Weil theo-
rem from the weak Mordell-Weil theorem but instead of using height functions,
Mazur uses Iwasawa theory and knowledge of Selmer groups.

The Birch and Swinnerton-Dyer conjecture

Conjecture 0.2 (BSD conjecture). Let E be an elliptic curve over a number
field F and let L(E, s) be its Hasse-Weil L function. This extends to an analytic
function on C and conjecturally satisfies the following properties

14



1. Order of vanishing: ords=1L(E, s) = rankZ(E(F )). Here ords=1 denotes
the order of vanishing at s = 1.

2. Leading coefficient: It is additionally conjectured that the leading Taylor
coefficient of L(E, s) at s = 1 (for L having vanishing order r at s = 1)
is given by

lim
s→1

L(E, s)

(s− 1)r
=

#SHE(F ) · ΩE ·
∏
cv · Reg(E/F )

(#E(F )tors)2

We now explain the terms in a little more detail. The most important definition
is that of the Hasse-Weil L function. If p is a prime of good reduction, set
ap = p + 1 − #E(Fp) and define Lp(E, s) = (1 − app

−s + p1−2s)−1. If p is a
prime of bad reduction, define Lp(E, s) as follows:

Case 1) If the reduction is split multiplicative, define Lp(E, s) = (1− p−s)−1.

Case 2) If the reduction is non-split multiplicative Lp(E, s) = (1 + p−s)−1.

Case 3) If the reduction is additive, define Lp(E, s) = 1.

(For a discussion of the reduction of an elliptic curve modulo p, see Silverman’s
book ’The Arithmetic of Elliptic Curves’). In this way, Lp(E, s) reflects the be-
havior of the reduction of E modulo p. Define L(E, s) =

∏
p Lp(E, s). Initially,

the infinite product is defined for Re(s) > 3
2 so that it converges. However,

L(E, s) has an analytic continuation to all of C and satisfies a functional equa-
tion relating L(E, s) and L(E, 2− s), involving the conductor of E.

ΩE is the integral of a Néron differential over E(R),
∏

v cv is the product of
Tamagawa numbers at primes of bad reduction. Reg(E/K) is the regulator of
the determinant of the height pairing on E(K)/E(K)tors.

Mazur’s conjectures for elliptic curves

Mazur states a conjecture, similar in nature to Iwasawa’s main conjecture for
an elliptic curve E/Q which is modular and in the case where F∞ is a Zp-
extension of a subfield F of Q(ζp) at a prime p at which E is assumed to have
good reduction. For simplicity, assume F = Q. For such a prime p, Mazur and
Swinnerton-Dyer constructed a p-adic L-function L̃p(s, E).

Note: An elliptic curve E being modular means that there is some non-constant
morphism X0(N) → E over Q where X0(N) is the elliptic curve whose points
correspond to pairs consisting of elliptic curves and subgroups of order N (it is
the moduli space for such data).

If Γ = Gal(Q∞/Q) and Λ = Zp[[Γ]], then L̃p(s, E) = φs−1 (θE) for all s ∈ Zp

where θE is an element of 1
ptΛ for some t ≥ 0. Here φs : Λ → Zp is defined as

follows: The action of Γ on µp∞ gives rise to an isomorphism κ : Γ → 1 + pZp
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(via the cyclotomic character, for γ ∈ Γ, κ is given by the relation γ(ζ) = ζκ(γ)

for any ζ ∈ µp∞). Then

φs : Λ → Zp is defined by φs(g(t)) = g(κ(γ)s − 1)

where under a fixed identification Λ ∼= Zp[[T ]], γ − 1 ↔ T .

The element θE is characterized by an interpolation property involving the val-
ues at z = 1 of the twisted Hasse-weil L-function L(z, E, ρ) for E/Q where ρ
varies over all Dirichlet characters of p-power order and conductor.

Under mild assumptions, θE ∈ Λ. θE can be identified with a Qp-valued mea-
sure on the Galois group Γ. Then the measure or any open subset of Γ is in
1
ptZp. If µE is this measure, then L̃p(s, E) =

∫
T
κs−1dµE where κs−1 is viewed

as a function on Γ.

Conjecture 0.3 (Elliptic curve analogue of Iwasawa’s main conjecture). The

characteristic ideal of XE(Q∞) = ̂SelE(Q∞)p is generated by θE. In other
words, as a Λ-module, XE(Q∞) ∼= Λ/(θE).

A piece of the BSD conjecture can be stated as

L(1, E) ̸= 0 ⇐⇒ E(Q) and SHE(Q)p are finite.

The interpolation property implies that

L(1, E) ̸= 0 ⇐⇒ L̃p(1, E) ̸= 0 ⇐⇒ T ∤ θE

where T = γ − 1 ∈ Λ, as before.

Conjecture 0.3 is valid⇒ T ∤ θE is equivalent to the assertion thatXE (Q∞) /TXE (Q∞)
is finite. Then Mazur’s control theorem implies that the last assertion is equiv-
alent to the finteness of SelE(Q)p.

If E(Q) as infinite, conjecture 0.3 implies that ords=1(L̃p(S,E)) ≥ rankZ(E(Q)).
This is becauseXE (Q∞) /TXE (Q∞) has Zp-rank equal to the corank of SelE(Q)p
which is at least rankZ(E(Q)) (with equality if SHE(Q)p is finite).

The first part of the BSD conjecture asserts that ordz=1(L(z, E)) = rankZ(E(Q)).
In order to deduce this from conjecture 0.3, we would need to prove the following
results:

1. SHE(Q) is finite,

2. TXE (Q∞) /T 2XE (Q∞) is finite

3. ordz=1(L(z, E)) = ords=1 (Lp(s, E))
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Mazur also made the following conjecture.

Conjecture 0.4. Under the same assumtions as in Conjecture 0.1, the Λ-

module XA(F∞) := ̂SelA(F∞)p is finitely generated and torsion.

Assume now that SHE(Qn) is finite for all n. What can we say about the growth
of |SHE(Qn)p| as n → ∞? If E has good, ordinary reduction and conjecture
0.4 holds for A = E and the Zp-extension is Q∞/Q, then it can be shown that∣∣∣SH (Qn)p

∣∣∣ = ρλn + µρn + v for n≫ 0.

Work of Coates and Wiles for CM elliptic curves

Coates and Wiles proved the following result in the direction of BSD in 1976:

Theorem 0.13. Assume E is an elliptic curve over Q with CM and that
L(1, E) ̸= 0. Then E(Q) is finite.

We outline the techniques used in their proof.

Suppose E is an elliptic curve over Q such that EndC(E) = O = ring of integers
of an imaginary quadratic field K. We assume p is an odd prime and that E has
good, ordinary reduction at p. Then p splits completely in K. Since K must
have class number 1 (CM elliptic curves defined over Q can only exist when
the CM field K has class number 1), we can write p = ππ̄ where π, π̄ ∈ O are
complex conjugate.

Let E[π∞] = ∪nE[πn+1]. Adjoining coordinates to K, we obtain the field
F∞ = K(E[π∞]) = ∪nFn where Fn = K(E[πn+1]). Considering the action of

Gal(F∞/K) on E[π∞], we obtain an identification ψE : Gal(F∞/K)
∼=−→ Z×p .

We write Gal(F∞/K) ∼= ∆ × Γ where Γ = Gal(F∞/F0) and ∆ ∼= (Z/pZ)×. If
F = F0,∆ can be identified with Gal(F/K) and there is a cononical isomor-
phism ωE : ∆ −→ (Z/pZ)×, corresponding to the action on E[π]. The extension
F∞/F is Zp and the only prime of F lying above π is is ramified.

Suppose E(Q) is infinite and P is a Q-rational point on E of infinite or-
der. We assume that P is a Q-rational point of E of infinite order. Assume
P /∈ πE(K) and that for each n ⩾ 0, Pn ∈ E(Q) satisfies πn+1Pn = P . Then
P0 /∈ E(K). (Note that we can always find such a sequence of points since

[πn+1] : E
×πn+1

−−−−→ E is not surjective.)

Let Tn = Fn (Pn) (the field obtained by adjoining the coordinates of Pn to Fn),
T∞ = ∪nTn. Then Tn/Fn is cyclic of order pn+1 and is unramified except at
the unique prime of Fn over π. T∞/K is Galois and Gal(T∞/F∞) ∼= Zp.

The action of Gal(F∞/K) on Gal(T∞/F∞) by inner automorphisms is given by
ψE . This can be seen by considering the 1-cocycles σn : GK → E[πn+1] defined
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by σn(g) = g(Pn)−Pn ∀g ∈ GK . We can check that σn|G∞
induces a compatible

system of isomorphisms Gal(F∞(Pn)/F∞)
∼=−→ E

[
πn+1

]
∀n ⩾ 0, equivariant for

the Gal (F∞/K) actions. This implies that Gal(T∞/F∞) ∼= Tπ(E), the π-adic
Tate module for E as Gal(F∞/K)-modules. Since Γ∞/F∞ is ramified only at
π, we have T∞ ⊂M∞ whereM∞ is the maximal abelian pro-p extension of F∞,
unramified everywhere except π.

Let X = Gal(L∞/F∞) where L∞ is the pro-p Hilbert class field of F∞, Y =
Gal(M∞/F∞) and Z = Gal(M∞/L∞), noting L∞ ⊂ M∞ by definition. Then
X,Y and Z are Λ-modules where Λ = Zp[[T ]].

M∞ and L∞ are Galois over K ⇒ ∆ acts on all these modules too. Consid-
ering the ∆-components corresponding to ωE , we obtain the exact sequence
0 −→ ZωE −→ Y ωE −→ XωE −→ 0 of Λ-modules.

The action of Gal(F∞/K) on Gal(T∞/F∞) by inner automorphisms induces

a compatible system of isomorphisms Gal(F∞(Pn)/F∞)
∼=−→ E

[
πn+1

]
∀n ⩾ 0,

equivariant for the Gal (F∞/K) actions. This implies that Gal(T∞/F∞) ∼=
Tπ(E), the π-adic Tate module for E as Gal(F∞/K)-modules. Since Γ∞/F∞ is
ramified only at π, we have T∞ ⊂M∞ where M∞ is the maximal abelian pro-p
extension of F∞, unramified everywhere except π.

A crucial part of the Coates and Wiles argument is showing that T∞/F∞ is
ramified at π. It then follows that T∞ ̸⊂ L∞ ⇒ T∞∩L∞ is a finite extension of
F∞ since all nontrivial subgroups of Gal (T∞/F∞) = Z have finite index ⇒ Z
has quotient Gal(T∞/T∞ ∩ L∞) isomorphic to Zp, on which Gal(F∞/K) acts
by ψE . Let KE = ψE |Γ. Then ZωE has quotient isomorphic to Λ/(γ0−κE(γ0))
as a Λ-module share γ0 is the topological generator of T .

If F ′ is an algebraic extension of K, SelE(F
′) is an O-module and we can con-

sider its π-primary subgroup SE(F
′)π, which is a subgroup of H1(GF ′ , E[π∞]).

Let F ′ = F∞. Then GF∞ acts trivially on E[π∞] ⇒ SE (F∞) is a subgroup of
Hom(Gal(F ab

∞ /F∞), E[π∞]). Coates proves that SE (F∞)π = Hom(Gal(M∞/Fα), E [π∞]).
Therefore, SE(F∞)π is related to the Pontryagin dual Hom(Y,Qp/Zp) (they are
isomorphic as groups but the action of Gal(F∞/K) is twisted).

Letting r = rank(E(Q)) = rankO(E(K)), SelE(K)π has a subgroup isomorphic

to (Qp/Zp)
r. Then the map SelE(K)π → SelE(F∞)

Gal(F∞/K)
π can be shown

to have finite kernel and cokernel. Therefore, HomΓ(X
ωE , E[π∞]) has corank

at least r. If r > 0, then the fact that T∞/F∞ is ramified at π implies that
the image of SelE(K)π in HomT1 (Z

ωE,E[π∞]) has Zp-crank at least 1. It
is passible to show that this image then has Zp-corank exactly 1 and hence
HomΓ (X

ω
E , E [π∞]) has Zp-corank at least r − 1.

Setting S = T − (κE(γ0)− 1), Sr | fY ωE (T ), S | fZωE (T ) and Sr−1 | fXωE (T ).
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The divisibility should be exact. This is the case when SHE(K)π is finite +
a certain p-adic height pairing E(K) ⊗O Kπ is non-degerente. Finiteness of
SHE(K)π ⇒ Y ωE/SY ωE has Zp-rank r. The nondegeneracy is shown to imply
that SY ωE/S2Y ωE is finite, i.e. in the classification of the Λ-module Y ωE , there
is no factor of the form Λ/(Sa) for a ⩾ 2.

Coates and Wiles show that if E(Q) is infinite, then the rational number
L(1, E/Q)/ΩE where ΩE = real period of E is divisible by all primes in an
infinite set, concluding that L(1, E/Q) = 0.
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